

POMPES MONOBLOCS PLASTIQUE

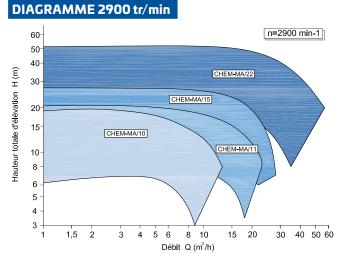
SERIE CHEM-MA

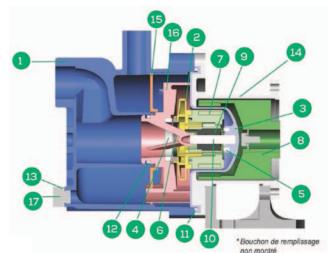
ENTRAINEMENT MAGNETIQUE AUTO-AMORCANTE

La pompe centrifuge à entraînement magnétique la plus polyvalente du marché

- Conception monobloc
- Fabrication en polypropylène ou en PVDF
- Aimants au néodyme fer bore (NdFeB) sur tous les modèles
- · Arbre et palier démontables
- Équilibrage ISO 1940 G2.5
- Moteur standard IEC (NEMAen Option)
- · Assemblage sans réglage
- Changement du moteur sans dépose de la pompe
- Maintenance rapide par l'arrière sans dépose volute
- · Garantie de trois ans
- Certifié CE

PRINCIPAUX AVANTAGES


- · Rendement élevé
- Hauteur d'aspiration élevée
- · Amorçage ultra-rapide
- Facilité d'utilisation
- Aucune garniture à remplacer et aucune fuite
- Matériaux anticorrosion résistants aux applications les plus exigeantes


UTILISATIONS

- Procédés chimiques
- Lavage de gaz
- · Traitement de surface
- · Industrie des mines
- Traitement des eaux
- · Industrie du papier
- Fabrication électronique
- Imprimeries
- Fournitures d'équipementiers
- Industrie pharmaceutique
- Eau très pure ou déionisée
- Climatisation

CARACTERISTIQUES

- Jusqu'à 70% d'efficacité de pompage
- Pression de travail élevée : jusqu'à 6 bars
- Viscosité maximale suivants conditions de service :
 - Jusqu'à 50 cP
- Température maximale suivant conditions de service :
 - Polypropylène 82° C
 - PVDF 104° C
- Amorçage et réamorçage automatique, sans clapet anti-retour
- Hauteur d'aspiration jusqu'à 7,6 m**
- Amorçage rapide
 - Jusqu'à 5,5 m en 90 secs***

MATERIAUX

ITEM	DESCRIPTION	MODÈLES en POLYPROPYLÈNE	MODÈLES en PVDF
1, 2, 3, 15, 16	Volute, roue, séparateur	Polypropylène renforcé de fibre de verre	PVDF renforcé de fibre de carbone
4, 5	Bague de butée	Céramique d'alumine à haute pureté, carbure de silicium	
6	Bague de butée de l'impulseur	PTFE chargé de bisulfure de molybdène, carbure de silicium	
7	Aimant d'entraînement interne	Aimants en alliage au néodyme-fer-bore encapsulés dans le polypropylène non chargé	Aimants en alliage néodyme-fer-bore encapsulés dans le PVDF non chargé
8	Aimant d'entraînement externe	Néodyme-fer-bore / acier	
9	Palier	Carbone, PTFE, Céramique d'alumine à haute pureté, carbure de silicium	
10	Arbre	Céramique d'alumine à haute pureté, Hastelloy C, carbure de silicium	
11, 12, 13	Joint torique	FKM, EPDM (Simriz®, Kalrez®)	

CALCULS CONCERNANT LA SERIE CHEM-MA:

^{*} La densité affecte la hauteur d'aspiration maximale. Diviser 7,6 m par la densité pour déterminer la hauteur d'aspiration maximale. ** Hauteur d'aspiration déterminée avec de l'eau à 20°C. *** Avec impulseur de diamètre maximal.

Corps de pompe thermoplastique

Le corps de pompe CHEM-MA fonctionne comme un réservoir de liquide, dont le passage d'aspiration en col de cygne élimine le besoin de clapets anti-retour internes.

Joint torique

Il crée une barrière étanche à l'air entre la volute interne et le passage d'aspiration en col de cygne. Aide à maintenir le vide requis pour un amorçage adéquat.

- **Divers types de raccords** Filetés Gaz (BSP) ou brides à face surélevée.
- Plaque séparatrice Permet de canaliser le liquide vers la roue et de recycler le mélange air/liquide durant la phase d'amorçage.
- **Volute interne** Permet de retirer efficacement l'air des passages d'aspiration pour un amorçage rapide.

Roue

Roue indépendante du coupleur magnétique interne. Permet le remplacement de la roue sans changer le coupleur.

Aimants et système fonctionnant à sec Les pompes CHEM-MA peuvent fonctionner à sec sans dommage, lorsqu'elles sont munies d'un palier au carbone.

> Les aimants au néodyme fer bore (NdFeB) sont les plus puissants et efficaces qui soient. Les aimants internes sont complètement encapsulés dans du polypropylène ou PVDF non chargé, pour une protection supérieure.

Entraînement externe facile à installer Un entraînement externe n'exigeant aucun réglage assure un positionnement optimal des aimants et facilite l'installation du moteur.

